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Our interest is in dynamic filtration through periodic, porous, 
saturated media. More precisely, here we develop a three-dimensional 
numerical model, based on boundary element methods, to compute the 
dynamic permeability over a wide range of such media. This generalized 
Darcy coefficient is obtained by the homogenization process applied to 
a periodic, deformable, porous medium under dynamic solicitations. An 
unusual choice of Green functions is made. A simple numerical proce- 
dure is used for the treatment of the periodic boundary conditions, 
Recent advances to treat singular integrals are employed and extended 
to our case. The method is tested on simple examples where theoretical 
results are available. In the static case results are compared with many 
previous results on periodic arrays of spheres. New results are given in 
the dynamic case. The scaling behavior for dynamic permeability in 
porous media is checked and discussed. 0 1x2 Academic PWSS, I~C 

INTRODUCTION 

The dynamic behavior of porous saturated media is our 
field of interest. This concerns many processes and applica- 
tions, such as flow in porous media (drag forces in packed 
bed reactors, for instance), propagation of elastic waves 
(seismic, mechanical) in soils or other porous media, 
acoustic propagation in marine sediments, etc. 

The aim of this paper is to compute the generalized Darcy 
coefficient. This is an important dynamic parameter 
governing fluid flow in porous media, indicated by the 
homogenization process. This method applied to a line 
periodic, deformable, saturated, porous medium under 
dynamic solicitations leads to a macroscopic description and 
allows us to perform a complete calculation of the effective 
parameters. The only geometrical restriction on our com- 
putation is the spatial periodicity (at the microscopic level). 
Previous work [3], restrained to the two-dimensional case, 
underlines the influence of geometry. We now want to test 
this again on three-dimensional geometries. Moreover, we 
want to build a numerical tool, capable of dealing with a 
wide range of geometries. Some existing computations are 
limited to the static case and to media of a specific nature 

(periodic array of spheres [35]). Finally, recent numerical 
[31] and experimental [ 181 results exhibit a scaling 
behavior for the dynamic permeability in porous media 
[32], based on a theoretical study of the limiting cases of 
low and high frequency response [21]. We will discuss these 
results. 

The first part underlines the main points of the filtration 
law. The mathematical problem to be solved is introduced. 
We shall call it periodic (in space), harmonic (in time), 
Stokes (linear) flow. In a second part, we discuss the choice 
of a boundary element method for 3D problems and deal 
with Green kernels. Then the third part deals with our 
boundary element formulation. Regularization methods for 
singular integrals are presented. In the next part, we build 
the discrete problem to be solved and show its implementa- 
tion. Finally, we present tests, experiments, and we conclude 
with the scaling behavior for dynamic permeability in 
porous media. 

1. GENERALIZED DARCY PERMEABILITY 

The dynamic behavior of fluid-filled porous media was 
first studied by Biot [8-l 11. His theoretical model, applied 
directly at the macroscopic level, is now generally accepted 
by scientists. Moreover, his prediction of the existence of a 
second bulk compressional wave in such media, was con- 
firmed experimentaly later by Plona [27]. Nevertheless, the 
phenomenological Biot approach does not allow precise 
computations of the governing coefficients involved in his 
law. This has led to much work reported by several authors 
[7, 12, 16, 19, 29, 30, 33, 341. 

The homogenization process applied to this problem by 
Sanchez-Palencia and Auriault [4] overcomes this dif- 
ficulty and enables us to perform complete computations of 
the governing parameters. From simple assumptions at the 
pores scale, this technique yields the macroscopic descrip- 
tion and clearly exhibits the parameters involved. 

The important point to remember is as follows: The 
formulation obtained by the homogenization approach is 
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similar to Biot results and highlights a generalized 
(dynamic) Darcy law. Moreover, it underlines the role of 
this dynamic filtration law, which contains all the dynamic 
coupling between the two phases (solid-fluid) in the 
dynamic behavior of deformable saturated porous 
media [2, 31. 

As in the static case, a permeability tensor characterizes 
this filtration law. We shall call it the generalized Darcy per- 
meability. Furthermore, we obtain the same generalized 
Darcy law if we consider the dynamic behavior of a fluid- 
saturated, deformable, porous medium or the dynamic 
behavior of a fluid flow through a rigid porous medium [Z]. 

In literature, many authors present experiments of waves 
propagating in deformable, porous, saturated media 
[7, 291. All these experiments give encouraging results, but 
are as yet difficult to carry out and to analyze in detail. 
Computations, or measurements of the effective parameters 
of the medium are difficult. The role of the pore structure 
geometry was introduced in Biot’s model using a “tor- 
tuosity” coefficient. But how can we determine its possible 
range of variation? 

A previous work [3], detailed in [13], shows in two- 
dimensional cases, the influence of the geometry on the 
generalized Darcy coefficient. Moreover, by an asymptotic 
study at high frequencies, it exhibited interesting geometri- 
cal parameters. Consequently, the influence of the pore 
geometry on wave propagation in saturated porous media 
have been studied [ 13, 16,22,30]. But these questions need 
further studies. More recently, some authors have proposed 
an approximate universal function independent of porous 
microstructures for the dynamic permeability [32]. After 
providing new 3D results, we will check and discuss this 
approximate universal behavior. 

To obtain the generalized Darcy coefficient value on true 
3D geometries, we need to solve a kind of Navier-Stokes 
problem with unusual boundary conditions. It is the pur- 
pose of our work, but let us first introduce the homogeniza- 
tion process, which will lead us to the problem to be dealt 
with. 

Homogenization Process 

Starting from a microscopic description (pore level) 
of the behavior of the two phases, solid and fluid, 
the homogenization process leads to an equivalent, 
homogeneous, macroscopic description of the medium. This 
homogenization technic uses the so-called double-scale 
method described in Ref. [6,28]. A small dimensionless 
parameter E, ratio of a characteristic microscopic length and 
a characteristic macroscopic length, and two dependent 
spatial variables x and y = x/e are used. x and y describe 
respectively the macroscopic and microscopic situations. 
Moreover, the micro-structure is assumed to be spatially 
periodic (for the variable y), which implies the periodicity 

FIG. 1. Two periods of the periodic medium 

for the geometry and the local parameters. In the case of 
porous media, two periods Q are sketched in Fig. 1. Then, 
the equivalent homogeneous situation is given by the 
asymptotic behavior when E vanishes. Even when the zero 
value is not effectively reached in a concrete case, the 
method leads to a first approximation for the macroscopic 
equivalent behavior. The heuristic method consists of 
seeking the unknown in the form v = u(‘)(x, y) + EV(‘)(X, y) + 
E’v(~)(x, y) + ... , where the v(‘)(x, y) are periodic in y, by 
introducing such developments in the equations describing 
the local behavior, and identifying the powers of E. 

Rigid Porous Medium 

Dealing with fluid flow through a rigid porous medium 
and the following assumptions for the microscopic 
description, this homogenization process leads to the main 
following results. Details are available in [ 1-4, 61. 

Microscopic Description: Notations and Assumptions 

l The solid part Q, is assumed to be rigid. 
l The fluid part Q, is assumed to be Newtonian and 

incompressible. The velocity of the fluid is small enough 
(slow flow) to satisfy linearized Navier-Stokes equations. 
But the linear dynamic term (p(dV/dt)) is taken into 
account. 

l For the sake of simplicity of the study, the motion will 
be isothermal and monochromatic. Thus we shall use usual 
complex notations to suppress time derivatives. 

. Dealing with porous media, we use a common sign 
convention for the solid and fluid stresses. They are positive 
in traction, as usual in solid mechanics. This gives an 
unconventional sign for fluid pressure. 

Homogenization Results 

l At the first order, the pressure p = p”‘(x, y) = p”‘(x), 
is constant over the period. The microscopic pressure p(l), 
gives the local periodic variations. This natural result for the 
homogenization process is known to people dealing with 
flow in periodic arrays [20]. 
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l At the first order, the velocity u(O) = u’~‘(x, y) is the 
solution of the problem 

-F, 

av/- 
+i 

-0 with the following boundary conditions: 

V = 0 on r, the solid-fluid interfaces; 

V and P are Q-periodic, where (2) 

o is the pulsation. 
p = s2p’ is the dynamic viscosity. This scaling is a 
consequence of the assumptions made on the fluid at 
the microscopic level (linear (slow) dynamic flow). 
p denotes the mass per unit of volume. 
Vj is the complex amplitude of the velocity com- 
ponentj. 
P is the complex amplitude of the microscopic pressure. 
F is the macroscopic pressure gradient, constant over 
the period Q. F = apco)/ax. 

The linear problem (1) is a kind of linear Navier-Stokes 
problem, with a splitting of the pressure gradient in a 
microscopic part and a macroscopic part F constant over 
the period, which is the impellar of the flow. It is well 
defined, with existence and uniqueness of a solution of the 
form: V,= kji( y, co) Fi (see [2]). 

Integrating over Q,, we get the generalized macroscopic 
Darcy’s law. ( V,) = (l/152]) Jn, Vi dQ = Kj,(o) F, with the 
generalized permeability tensor Kjl(o) = ( l/jQI)JQlkj,( y, o) 
dQ. 

Moreover, the technique employed gives us a clear physi- 
cal meaning for the macroscopic quantity defined. (V,) 
is representative of a flux. In a more physical way, we 
could write: F,= H@(o)( vi) with Hb(w) = l/KO(w) = 
Hi,(o)+ iH2,,-(co). The real part, HIQ(w), is repre- 
sentative of the viscous dissipative energy and the imaginary 
part, H2, (o), is representative of the inertia terms. The ten- 
sor H(w) can also be interpreted as a true spectral signature 
of a porous medium. 

Our purpose is to compute H(o), for several 3D 
geometries. Solving numerically the problem (1) 
(microscopic level, variable y), with boundary conditions 
(2) will give us the velocity field on the fluid for a given 
macroscopic pressure gradient F. Then H(w) is obtained by 
averaging the velocities on the fluid domain. Numerically 
it would be convenient to deal with the equivalent 
dimensionless problem 

1 a2p). 
2 ayjp) ayia) 

i aP) _ ia VC”), + - - = 
2 ay(ulj - FI”’ (3) 

ap). 
-----J=O 

ah ’ 
and V’“’ = 0 on C 

Vu), P’“‘Q-periodic. (4) 

with the following definitions for the dimensionless 
quantities with superscript (a): 

yi”’ = y,s/a, a is a characteristic length of the pores. 
CO(~) = wa2/2v 
VP)= V$‘a/v 
pea) = p(‘)a2E/~v 

FjP’ = (a312pv)(ap’o’/ax,). 

In the following, we are going to deal only with dimen- 
sionless quantities and work at the microscopic level (y’“‘). 
Since there is no possible confusion, the super script (a) will 
be omitted. 

2. A BOUNDARY ELEMENT METHOD 

Our purpose is now to compute H(w) for various 
three-dimensional cases, using an efficient numerical tool. 
Let us first answer the following question: 

Why do we use a boundary element method? 

Let us first recall the following points of the previous 2D 
finite element model [ 14, 151: 

l First, to build the mesh we used complex mapping. The 
domain under consideration was transformed into the unit 
square. An obvious, uniform mapping was then done with 
isotropic elements, and, using the inverse transform, the 
final mesh was obtained. It was very well adapted to our 
problem, because the lines of the mesh were also the current 
lines and potential lines of an inviscid flow. For a 3D 
problem, the extension of this method is not possible. The 
problem of efficient automatic meshing of various 3D 
volumes, starting from a boundary mesh, is sometimes 
difficult, despite recent advances in this area. 

l The following point concerns the finite elements 
available for this kind of problem. Satisfying exactly the 
incompressibility condition for the fluid is not easy and 
leads to complicated and expensive elements. To overcome 
this difficulty, an iterative scheme was used, which partially 
satisfied this constraint. Moreover, the cheaper conformal 
element used was quadratic, and our nodal unknown values 
were and are complex, this leads rapidly to a large problem 
in terms of memory size and, consequently, computer time. 
So a suitable refinement in the mesh could become very 
expensive. 
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On the other hand, the boundary element method gives a 
compromise which appears more adapted to solve our 3D 
linear problem. The main advantages are the following: 

l Our purpose is to compute the macroscopic velocity 
( V,). We shall show that it can be expressed only as a func- 
tion of boundary integrals. Then only the boundary will be 
used to build the discrete problem. And so the total number 
of degrees of freedom is reduced. 

l The incompressibility condition is exactly satisfied by 
way of the Green kernel. The problem will be solved 
directly. 

There are, however, some difficulties to overcome. These 
will be mentioned and solved in the following. It should be 
noted here that despite the reduction of the total number of 
degrees of freedom, the reduction in memory requirements 
is not so marked. The matrix of the linear system to be 
solved is full, rather than sparse, and often ill conditioned. 

In order to make use of the boundary element method we 
must first obtain the Green kernel. Starting with the usual 
Green kernel for the classical Stokes problem [24] and the 
well-known fundamental singular solution for the periodic 
Stokes problem [20], we will give two new Green kernels. 
One will come from a direct extension of the result for the 
periodic Stokes problem, taking into account the dynamic 
term. The other one, nonperiodic, will be obtained using the 
Kupradze [ 23 ] method. 

2.1. Green kernels 

2.1.1. The Usual Stokes Problem 

For the usual Stokes problem (static), the Green kernel is 
available in [24] and is recalled: 

+ Cxj- Yj)Cxk- Yk) 

lx- Y13 

and Xk-yk 

qk=2n Ix- y13 

It satisfies 

= -sjks(x - y) and i.60, 
axj 

where 

x is the current point, y is the singular point, 
6(x - y) is the Dirac distribution at point y, 
6, is the usual Kronecker symbol, 
a: is the velocity component j for a dirac source in 
direction k, 

qk is the pressure for a dirac source in direction k. 

2.1.2. The Periodic Stokes Problem 

The Dirac source at point y is now replaced by a set of 
Dirac sources at y,=y+m,d,+m,d,+m,d,; miEZ. 
d, , d2, d, are the basic vectors defining a unit cell Q of the 
periodic array. This leads to the problem: 

1 Pa; i aqk 
Tax,ax,+2dx, 

k 
CL0 

= -Sk,1 1 C@x-y,)and axj- . 

mt mz m3 

Hasimoto [20] gave the solutions using Fourier series 
and b,, b,, b, the usual vectors of the reciprocal lattice. 
Choosing a zero mean value on 52 for the velocity, the 
solutions are: 

and 
2 

4’= -- (xl- YJ 
IQ/ 

2.1.3. A Periodic Kernel for Our Periodic, Harmonic Stokes 
Problem 

With the same notations, and dealing with complex 
amplitude for our dynamic study, the problem now is: 

i aw i aqk 
Tax ax +~~-jmrf / / I 

=-~kj~ c J$W+v,)andax~- 
LO, 

ml m2 ml I 

Using Fourier series we obtain 

6, (Kj K,/Km Km) 
“=’ ,Kzo K K + (io/2x2) e 

-2rrrK. r 
’ h2 IQ m m 

and 

q’= -2 (x(-y,) 
IQ21 

-L&sLe -2inK.r 

7~ IQ1 ,~,+&nKm ’ 

where q’ is the same as for w = 0. We will come back later 
to this property. 
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Direct numerical use of these kernels (singular Fourier 
series) by way of a collocation method will lead to 
unreasonable computations. In the static case (Stokes flow), 
Zick and Homsy [35], dealing with periodic arrays of 
spheres, overcame the difficulty by using a Galerkin method 
over a set of spherical harmonic functions, forming a 
complete set over the surface of a sphere. This allowed them 
to perform analytic integrations and to obtain reasonable 
series to compute. 

For our dynamic linear periodic Stokes problem, the 
singular Fourier series are very similar to those of the usual 
Stokes problem. From a computational viewpoint, tests 
have shown that the velocity series become more and more 
expensive to evaluate when o is increasing. Moreover, in 
order to deal with a wide range of geometries, we do not 
wish to use a set of spherical harmonic functions, but rather 
to use a finite element approximation to solve our boundary 
integral problem. 

We shall now overcome the difficulty of evaluating such 
Fourier series by using a fundamental singular solution not 
Q periodic. The periodic boundary conditions will then be 
satisfied by the same numerical trick used in [ 141 for the 2D 
finite element model. 

Unfortunately, this solution leads us to deal with all the 
boundaries, not just the solid-fluid interface. For simple 
cubic packing of spheres, for instance, it means that a new 
and different mesh must be used for each different concen- 
tration. But from a practical point of view, is the same mesh 
of the solid-fluid interface (which stays the same for dif- 
ferent concentrations) convenient to reach accurate results 
over all the range of concentrations? Flows do not remain 
identical around the spheres. 

2.1.4. A Nonperiodic Kernel for Our Periodic, Harmonic 
Stokes Problem 

With the previous notations, our purpose is now to find 
aJk and qk such that: 

i aw i aqk 
5 ax, ax, 

J t---iioaj” 
2 axj 

=-6,6(x-y) and $0. 
J 

To summarize the Kupradze method [23], which will give 
us a solution: 

The general problem to solve can be written: 
B . G + 6 . I = 0, where 

I is the unit matrix, 
G is the Green matrix, which gives the set of Green 
kernel, 
B is a matrix operator, 
6 is the Dirac distribution at the origin. 

If x denotes the convolution product, in terms of distribu- 
tions,then:[B.6l]xG+6.I=O.SoGappearstobethe 
inverse for the convolution product of [B . Sl]. We define 
now the set of distributions [B’ . Sl] so that [B Sl] x 
[B’ .6 I] = [det B .6 I]. (Note, that the matricial operator 
[B’] is easy to build using the cofactor of [B].) 

If 0 is the scalar field solution of (det 6 .6) x 4 + 6 = 0, 4 
is also solution of [det B . Sl] x c,hl + 6l= 0. Consequently 
[B~lxB’6I]xq5I+61=0, and therefore G=[B’dl]xcjI 
or G = B’(q5I). The problem is then reduced to finding the 
scalar solution 4. We will now solve it for our case. 

Using i as the pure imaginary number and A as the usual 
Laplacian operator, we obtain for our problem, 

B= 

-1 
?A-h 0 0 

i a= 
-- 2 ax, 

0 ;A-iw 0 -&& 
-2 

0 0 ;A-ice i& 
3 

i a I a 1 a 
-- -- -- 0 

I 28x, 2 ax2 2 ax, I 

det B=(iA-io)(iA-io)(-aA) 

-- 

where 4 is given by (- aA)(iA - io)(iA - iw)d + 6 = 0. 
Using $ = ($A - io)& it becomes (- iA)(iA - iw)$ + 

6=0. Naturally, we search $ as: II/=cri.$i+~.$~ with 
cr,,~~~~Rand 

til, the well-known solution of A$, = 6 (Laplace 
equation) . *i = - 1/4rcr (a nonpropagative wave). 



Ic/*, well-known solution of d+ 
J;;c: 

- 2ic& = 6 (Helmoltz the isotropic loading. In order to solve.our problem with the 
equation). 11/Z =, (1/4rtr) e(’ +‘I (a propagative wave macroscopic pressure gradient, we will not use this last kind 
attenuated as Jo). of volume source. 

This leads us to 2.2. The Boundary Element Formulation 

- a2* -A,) 
ax, ax, 

av 
ax, ax2 

a% 

a2* 
ax2ax, 

a’* ----A$ 
ax2 ax2 

a% 
ax2 ax, 

&(A-2iw)$ - 

and 
av 

ax, ax, 
-$(A-~~co)$ 

I (6) 

av 
ax, ax2 

-$(A-2io)t,!1 
2 In the same way, using the following dimensionless fluid 

av ------A$ 
stress Cj, = (a V,/ax, + a V,/dxj) + djIP, the problem to be 

ax, ax, 
-$(A-2iw)l/, 

3 1 solved becomes 

-$(A-2iw)$ 1 a4, 
3 

(:A-,)(+A-,!,l --- 
2 ax, 

ioV,= -F, 

Let us now give a physical interpretation to this Green and 
matrix. 

Naturally, the Green matrix gives the responses of an 
infinite medium for four independent local sources. These 
are the four columns of the matrix, which give the three 
components of the velocity (lines 1, 2, and 3) and the 

i av. -I- 
2 ax, 

-0 with Vi, C,, Q-periodic 

and V,=Oon r. (8) 

pressure (line 4). The first columns, 1, 2, and 3, correspond 
to a local harmonic unit force respectively in directions 1,2, 

As is customary, to start with the boundary element 

and 3. The column 4 represents a harmonic local volume (B.E.) formulation, we multiply (5) by V, and (7) by aJ” and 

source. we substract both equations so obtained. Then, by inte- 

If 01: denotes the velocity componentj and qk denotes the grating over the fluid part Sz, of the period Sz, we have 

pressure, corresponding to a harmonic local unit volume 
force in the direction k, we have: C$ = a( (a’$/ax, ax,) - 
S, A$). And using the properties of I,+~ and ti2: qk = 
(a/8x,)( 1/27rcr). The pressure wave is nonpropagative. This 
is a diffusive wave. A natural result for the pressure is an = s (Fja;-6,$(X- y) V,)dQ. 
isotropic stress in a viscous incompressible fluid. The RI 

velocity wave is constituted of two parts: Integrating by parts and using Eq. (6) and (8), we obtain 
- a diffusive wave, linked with the pressure wave; the integral equation: 

- a propagative and attenuated wave, to link with the 
deviate part of the loading. The attenuation is the result of 
viscous dissipation and is proportional to &. 

In the case of a volume source (column 4) both velocity = 
and pressure waves are diffusive, which is a consequence of 1 _ (FjaF-8kjB(x- y) V,)dQ (9) 

rr, 

2.2.1. Usual Approach 

Let us now exhibit the boundary element formulation 
of the problem. First, it will be more convenient to define 
some new notations. They are as follows: In the fundamen- 
tal problem the Green pressure qk will be replaced by the 
Green stress: a$ = (&$/ax, + lJa:/ax,) + tSjlqk and so, our 
fundamental problem becomes 

i ad 
2 ax, Ir- ioa: = --6,6(x - y) 
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The macroscopic pressure gradient, F, is constant over 
the period 0, and using the divergence theorem, it follows: 

1 5 I an/ 
(a$V,-a:C,,)n,dT 

= F, 
5 

a,fdQ-6, 
s 

6(x - y) V, dQ. (10) 
Q a/ 

Let us now change so, 01: dsZ into a boundary integral. 

2.2.2. How to Obtain a Boundary Element Formulation 

Integrating (5) over Q, allows the previous volume 
integral to be written for o #O in terms of boundary 
integral. Also making use of the divergence theorem we 
obtain 

io 
s Q/ 

aTdf2=! 
s 

6(x-y) dQ. (11) 
ml 

a$n, dT + 6, 
s Ql 

This method is of interest in saving computational time as 
shown here below, but becomes numerically more and more 
ill conditioned as o decreases. 

Another trick, which now works also in the static case, is 
the following: Fj is constant over a,, so we can write: 
F, = (8/dx,)(F,x,) and then 

Fj 5 Q 
aTdQ= 

I R $, (F,xJ a: dQ. 
1 J 

Integrating the left-hand side by parts ant 
pressibility we obtain 

and, finally, 

1 using the incom- 

)dQ 

‘j s Q/ 
a; dQ = F, (x,at) nj dT. (12) 

Substituting (12) or (11) in (10) will give the boundary 
element formulation. 

2.2.3. Regularization of Our Integral Equation 

Singularities in the previous formulation lead to well- 
known difficulties for numerical computations. Let us try to 
regularize this equation. The method employed is the direct 
extension of a regularization technique used for elastostatics 
and steady state elastodynamics presented in [ 171. This is 
allowed by a property of our Green kernel. 

A local study around the singular point y of our non- 

periodic harmonic Green kernel gives us the following 
important property: 

a,” (w) = 01: (0 = 0) + regular terms 

tr (0) = t; (w = 0) + regular terms 

(t/” = a+,). 

(13) 

(14) 

Using (14), we can now obtain a regularized form of our 
boundary element formulation. Let us consider a rigid body 
motion of the two phases. It implies: C,, = 0; F,= 0; 
V,(x) = Vj( y) = const. So (10) becomes 

1 
T 

s ani 
t,“(w=O) V,(y)dI- 

= -6, j 6(x-y) V,(y) dsZ. (15) 
RI 

Finally, (lo)-( 15) lead to the following regularized formula- 
tion: 

I 
z 

s am 
(t;(o)-tt/k(o=O)) Vj(y)dT 

+ $jaQ t,“CO)CVj- Vj(Y)) dr 
I 

-4 Ia, a;(o) T,dT=F,j aT(w)dQ (16) 
I Q/ 

The first integral of the left-hand side term is then regular. 
All the others integrals are now weakly singular (l/r). 
Numerical evaluation of such weakly singular integrals will 
be given here below. The highest order of singularity is 
reduced from ( l/r2) to (l/r). We have already seen how to 
deal with the right-hand side term, both in static and 
dynamic cases, but let us underline the following point. 

In the dynamic case, (11) can also be regularized. Using 
(15) it follows: 

io j aT(w)dQ=fj (t;(o)-tF(o=O))dT. 
QI m 

Please note that here we find, in the right-hand side, the first 
integral of (16), since Vj( y) can be put out of the integral. 
Before going on to the discrete problem and its numerical 
implementation we need to deal with the mean velocity 
( V,), the true quantity we want to compute, 
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2.2.4. The Stress Method 

Integrating (7) over Q, gives 

Tjdl.+$( 

where n = !!?!! is the porosity. 
IQ1 

But for w = 0, this method fails. It just allows us to check the 
accuracy of our results, ((l/2 IQ1 ) Ian, T, dQ + nFj = 0). To 
find a more general method, we must use the velocities 
computed on the boundary. 

2.2.5. The Velocity Method 

The basic idea we use now is a property of ( V,) given by 
the homogenisation process; it is a flux. From the incom- 

x2 
I 

a 

3 

pressibility, we deduce the relation (8/8x,)( Vkxj) = Vi. 
Integrating over Q,, and using Green’s formula, it follows: 
( Vj> = (l/IQ1 1 SXZ, V!cxjn/c dK 

If Z, and S, denote respectively the length in direction j 
and the section orthogonal to the direction j of the 
parallelepipedic period, at xi = Zj we can write: ( V,) = 
(l/sj) J%,=I, Vknk dr 

From a practical point of view, we are going to see the 
interest and the complementarity of both methods later on. 

3. DISCRETE PROBLEM AND NUMERICAL 
IMPLEMENTATION 

3.1. Discrete Problem 

We present here a first attempt, so we have made some 
choices to reach a reasonable precision, at the lowest cost. 
The results will or will not confirm our choices. 

b 

FIG. 2. The periodic boundary conditions in the case of a narrow slit: (a) the periodicity of the nodes, for i= 1 to N; xZ(Ai) = x,(B,); (b) the case 
of the narrow slit; (c) The equivalent numerical picture of the narrow slit. 
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The boundary is approximated by a set T, of usual finite l Regularizing mapping of each of the previous 
elements. Quadratic elements have been selected to deal singular triangles. The idea is to map a triangle on a square, 
with curved surfaces. They are the six-node triangular ele- so that the singular point located on a vertex of the triangle 
ment and the eight-node quadrilateral element. For the sake is mapped onto an edge of the square. According to Fig. 3, 
of simple implementation, we use constant approximated the following relations define this regularizing mapping: 
fields on each finite element, for both stresses and velocities. 

xi=(l -p,)xi’)+p,(l -p2)$‘+plp2xj3 

3.2. Boundary Conditions for i=l,2, 

The boundary condition V = 0 on r, the solid-fluid inter- 
face, is satisfied directly by the formulation. This allows us 
to perform some integrations only on part of the boundary. 

p 1, p2 denote point coordinates in the square, 

xi denotes the point coordinate in the triangle, 

For the periodic boundary condition, it is done by using a 
simple numerical trick as shown by Fig. 2. 

xii’ denotes coordinate i of the vertexj of the triangle. 

First we assume the periodicity of the mesh. Then we l Regular integration using Gauss quadrature. 
assume the same memory location for the nodal unknown 
vectors (stress and velocity) of two periodic elements. This Tests have been performed and give accurate results with 

allows us to save memory and consequently CPU time and a relatively low number of integration points as shown 

leads us to solve a square linear system. in [ZS]. 

3.4. Implementation 

2.3. Integration In this last section, we briefly describe how we have 

Now to build the linear system to solve, we only need to solved the linear system. Its matrix is full, in general non- 

perform integrations. Quadratic elements and kernels do symmetric, and could be ill-conditioned. To build a robust 

not allow us to perform analytic integrations. Regular and efficient tool, we have selected Gauss elimination as a 

integrals are computed using standard numerical integra- direct method, with a partial pivot selection strategy. To 

tion schemes (Gauss quadrature). Difficulties arise with manage the memory and save CPU time, we have used a 

singular integrals. They are all weakly singular l/r. The dynamic memory management package. This also provides 

method employed is presented in detail in [25]. It uses us some minor advantages in the flexibility of our program. 

triangle polar-coordinates to reduce the order of singularity 
by one degree. So we will obtain regular integrals. 4. TESTS AND EXPERIMENTS 

Main steps of this singular integration. 

l Mapping the curved element into the usual reference 
plane element using the well-known shape functions. 

l Splitting this plane singular element. As we use 
constant approximated fields on each element, we need one 
node to compute this constant value. It is chosen as the 
barycenter of the element. This is also what we call the 
singular point. In order to obtain triangle with the singular 
point located on a vertex we split the element into suitable 
triangles. 

p2 1 P’4(0.1’ p’g(l,l) 

p3 
A’ \ x2 ,,’ ‘, 

/ 

p+“\s :, ==D \ 
1. ‘-I* 

EL 
Xl 

P’l(O.0) P~2(1.0)pl 

FIG. 3. Regularizing mapping using triangle polar coordinates. 

For all the cases with which we want to deal, eigen 
vectors and eigen values of the second-order tensor H are 
obvious. In the following, H(o) will denote the eigen value 
of interest of this second-order tensor depending of the 
macroscopic pressure gradient F (applied in the corre- 
sponding eigen direction). 

Using the previous dimensionless quantities o(“’ and 
H’“‘(w) =na2H(w)/2p (n is the porosity) (split in real 
Hl(“‘(w) and imaginary H2’“‘(w) part) is not a convienent 
way to plot our results because of the a parameter. We will 
use a more physical way, as done by Boutin [ 161. He uses 
a characteristic pulsation 0,. = nH(o = 0)/p, such that both 
viscous and inertia terms in the flow would be of the same 
order of magnitude. It is implied with our notations 
o!P = Hl(“‘(o = 0) = H’“‘(o = 0). Moreover, nH2/op = 
H2’“‘/o’“’ underlines nH2/w as a coupling mass of physical 
interest, which appears in the equations of motion. So our 
results will be given by two kinds of curves: H 1 (o)/H 1 (o = 0) 
against o/w< and nH2(o)/wp against w/w,. These are the 
physical parameters of interest for wave propagation in 
saturated porous media. This will show how the scaling 
behavior proposed in [32] is accurate. 
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4.1. Tests 

Two kinds of tests have been performed: First on smooth 
geometries where analytical solutions are available; second, 
on more severe geometries where previous numerical or 
experimental results are available. 

41.1. On Smooth Geometries 

These are periodic arrays made of parallel narrow slits or 
cylindrical ducts. Analytical results are known [ 5, 131. The 
computation performed is illustrated on each figure by a 
sketch of the array, a drawing of the period used, its mesh, 
and an arrow showing the direction of the macroscopic 
pressure gradient F. 

Dealing with parallel narrow slits, Fig. 4a-d show the 

convergence of velocity and stress results towards the 
numerical solution with grid refinement. The convergence 
towards the analytical solution is also improved. 

Some divergences occur at high and low frequencies; we 
will come back later on with more severe geometries. Cylin- 
drical ducts (Fig. 4e, f) introduce a new approximation. Our 
quadratic elements do not exactly map the curved boundary 
surfaces. So for about the same grid refinement, the results 
are less accurate than for narrow slits. 

Nevertheless, we obtain, not perfect but, good results 
with the simplest approximation (constant stress and 
velocity on each element) with relatively coarse mesh and, 
therefore, at very low cost. For the narrow slits, previous 2D 
finite element computations [ 14, 151 have been more 
expensive. This would allow us to investigate more severe 
3D geometries with finer grids at reasonable cost. 
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FIG. 5. A more severe 2D example: + , velocity method; x , stress method; 0, previous FEM results; ., previous experimental results. 
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FIG. 6. Static results on three kinds of isotropic arrays of spheres and for various porosity: simple cubic packing, SC; body centred cubic packing, 
BCC; faced centred cubic packing, FCC; 0, existing results; + , velocity method. 

FIG. 7. Accuracy of our static results for FCC array and low porosity FIG. 8. Two typical meshes for periodic arrays of spheres. All the 
values; -, static results; +, dynamic velocity results for low frequencies; possible symmetries are used: a. SC array porosity = 0.55 1038 elements; 
x , dynamic stress results for low frequencies. b. FCC array porosity = 0.2595 1432 elements. 

b 
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4.1.2. On More Severe Geometries 

These are 3D periodic arrays of spheres [35]; we have 
studied a 2D example before [3, 131. For the 2D example 
(Fig. 5) we check our results with previous numerical and 
experimental data. H = Hl + iH2 can also be written 
If= IHI e”. Indeed, IHI and 4 are the true experimental 
measurements. Plotting both IHI and 4 against the pulsa- 
tion w will be of interest. Our new results show a good 
agreement with the low-frequency finite element results. 
They confirm the problem of the accuracy of the phase 
measurements. For the high frequency range, these new 
results improve the old one. They have been checked on 
several grids; previous finite element results have not. 
Moreover, experimental high frequency points are difficult 
to obtain for technical reasons, and so our previous results 
[ 31 are suspicious and inaccurate. 

Three kinds of isotropic periodic arrays of spheres have 
been considered, over a wide range of porosity. These are 
SC arrays (simple cubic packing), BCC arrays (body 
centred cubic packing), FCC arrays (faced centred cubic 
packing). First tests have been performed with w = 0, 
because previous static results [35] are available. Com- 
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parison of results is done on Fig. 6, plotting H(o = 0) 
against the porosity n. We find a very good agreement except 
for very low porosity, for the FCC array. Nevertheless, the 
difference is always less than about 10%. For very low 
porosity, we need to use very line grid, due to a very com- 
plex fluid flow. We can have better results in extrapolating 
those coming from a dynamic computation at low frequency 
(Fig. 7). The reason is perhaps that, in this case, the 
quantity Jn, 01: dQ can be completly regularized. 

Finally, we have checked the convergence of our com- 
putation on true 3D, dynamic cases. Let us just mention 
that no previous results were available for these cases. 
Figures 8a and b give respectively typical examples of a 
mesh for the SC and FCC arrays. They use all the possible 
symmetries. Figures 9 show a good convergence for the SC 
array with n = 0.55, using about 1000 elements. This means 
building, storing and solving a large linear system (1000 
elements give 6000 degrees of freedom and a large and full 
matrix). We have obtained about the same convergence 
results for the other periodic arrays of spheres excepted for 
the FCC arrays with n =0.28 and n =0.2595. Figure 10 
illustrates the convergence for the FCC array with 
n = 0.2595. The convergence of velocity and stress results for 
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the liner grid provide good information on the accuracy of 
the computations. The memory space available does not 
allow us to perform computations on a liner grid to confirm 
the convergence in this last case. 

In conclusion, these tests provide good results and 
illustrate the complementarity of velocity and stress 
methods, which give an estimate of the accuracy of the 
results. For the low frequency range (o G w,,), the velocity 
method gives accurate results. The stress method 
degenerates when o decreases, a logical result, if we keep in 
mind that it does not work for o = 0. On the other hand, the 
stress method provides better results for the high frequency 
range than the velocity method. For high frequencies, line 
meshes are required to obtain accurate results. When the 
frequency increases, the wavelength decreases, and we need 
to reline the mesh. This will lead us to practical limitations 
in the frequency range for more severe geometries. 

4.2. Experiments 

We now give, to our knowledge, new results. These are 
dynamic data for the previous isotropic arrays of spheres 
and for a 3D periodic array of connected ducts. 

Isotropic Arrays of Spheres 

As shown during the previous tests, convergence of stress 
and velocity methods can be achieved, except at high and 
low frequencies where respectively stress and velocity 
methods are the most accurate and converge with grid 
refinement. Figures 11 give these results for the isotropic 
periodic arrays of spheres. The asymptotic value for 
nH2/op = H2’“‘/o’“‘, when o tends to 0, does not exceed 
2.6. Nevertheless, it varies from 1 to 2.6 along the porosity 
range. 

As mentionned previously, for high frequencies, and 
mainly for low porosity, convergence with grid refinement is 
not always achieved. For obvious practical reasons, the size 
of the mesh cannot always follow the wavelength decrease. 
This leads to some lack of accuracy for high frequency 
results (curves crossing each other). Nevertheless, special 
efforts (computations on liner grids) have been made on 
given points to confirm the significant variations observed 
on H(w), with the various 3D geometries. Despite the lack 
of accuracy for high frequencies, all curves nH2/op = 
f (o/o,) seem to converge toward 1 when w tends to infinity. 
It has been shown [l] that this limit value cannot be lower 
than 1, since we deal with isotropic arrays. The asymptotic 
study for high frequencies performed in [3] for 2D 
geometries could or could not confirm this result. 
Figures 1 lb, d, f also point out significant variations of 
H l/HO with the porosity for the SC, BCC, and FCC arrays. 
Starting from o/o, = 1, dynamic effects (H l/HO # 1) are 
different for the various concentrations and arrays. These 
results give additional information for the scaling method 

for dynamic permeability in porous media proposed in 
[32]. But let us first remember this scaling method. 

The main result of [32] is the following: 

Ris a function dominated by the geometry of the throat 
region in a medium. Assuming the pore cross sectional 
area to vary slowly near the throat, K can be 
approximated by a universal function independent of 
porous microstructures. 

c1 is the tortuosity coefficient. It is defined in [21] by 
the following asymptotic results, on which the scaling 
behavior [32] is based. 

K(o) = K(0) + iC,(wp/p2) when o + 0 
K(o) = (in)/(apw)( 1 - i(6/2)) when o + cc 
C, is a coefficient with dimension of [area12. 
1 is an effective pore-size of the medium. 

6 = JWOP 

n is the porosity. 

The link with our notations is simple: 

when o +O 

-=-a when o+ cc 

when ~+a. 

Figures 12 show our previous BCC and FCC results 
under the form Kl(o)/K(O) = fi(w/w,,), K2(w)/K(O) = 
f2(w/~c), IK(o)l/K(O)=f~(o/w,), Phase(K(w))=Lddw,), 
with K(o) = Kl(w) + iK2(w). The functions f,, f2, f3, f4 
seems nearly the same for the various concentrations 
and arrays. At the opposite, the true physical parameters, 
H 1 (o)/H(o = 0) representative of the viscous dissipative 
energy and nH2(o)/op representative of inertia effects 
(coupling mass), do not point out a similar universal 
behavior (Fig. 11). 

Finally let us note that we have used o/o,, instead of 
cr(w/w,) in [ 321. This has no effect, since LX seems to be equal 
to 1 for all the cubic packing tested. Moreover, Fig. 13 
shows the same thing on two simple cylindrical arrays, 
where c( = 1 [3]. The scaling behavior [32] seems to be 
valid using K, but fails if we use H = 1 /K. We could explain 
this deviation, using the more complete asymptotic 
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FIG. 12. Dynamic results using K(w)= l/H(w) for the BCC (body 
centred cubic packing), the FCC (faced centred cubic packing) arrays, and 
for various porosities. 

frequency dependence when o + co, given in [3, 131. 
Providing asymptotic behavior of H(w) gives us a physical 
explanation of the variations observed on H(o). A first 
approximation was obtained assuming that, at high fre- 
quencies, the fluid is perfect (viscosity forces are negligible). 
Since the viscosity is zero at this initial step, the result 
concerned only the inertial part H2. And we obtained 
nH2/wp = B- ’ when o -+ co, where in the general case B is 
a real symetrical tensor. The second approximation is given 
by the boundary viscous layer, itself considered as a plane 
layer in first approximation. This gives [3] 

when o+ cc 

where C in the general case is a tensor, whose components 
are shape coefficient, the dimension of which is the inverse 
of a length. The first order on Hl gives a second order on 
H2. This asymptotic approximation is quite correct for H2 
as shown on Fig. 13 in the simple cases of narrow slits or 
cylindrical ducts. But H 1 needs a second order (Fig. 13); in 
fact a third-order approximation, which is constant, may be 
introduced, taking into account the curvature of the bound- 
ary layer. This may explain the deviation to the observed 
scaling behavior. For a given array, only the porosity is 
changed. This means that the radius of the spheres is 
changed, and also the curvature of the boundary layer. It 
clearly exhibits the role on the dynamic permeability of the 
curvature of the solid-fluid interface and the limits of the 
scaling behavior proposed in [32]. 

Dealing with Hl(w)/H(O) and nH2(o)/op, the true 
physical parameters, it is not easy to find an approximate 
universal frequency dependance with a given number of 
geometric parameters. The asymptotic results on H(o) with 
one order when w + 0 and two orders when w + cc give a 
good approximation. The transitional region, where low 
and high frequency approximations are not valid, is 
relatively reduced. 

A 30 Periodic Array of Connected Ducts 

Dealing with dynamic behavior of porous media, H(o) is 
an essential parameter. Due to the lack of data, and the 
difficulty of measurements, authors have built models and 
made some assumptions to approximate H(w), using 
analytical results obtained on smooth geometries. Our pur- 
pose is to consider the pore geometry of the period shown 
by MODEL3 of Fig. 14, and to check the validity of three 
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FIG. 13. Asymptotic behavior and scaling behavior on two very simple arrays: -, analytical results cylindrical ducts; , asymptotic behavior (3) 
cylindrical ducts; - - - , analytical results narrow slits; - .-. , asymptotic behavior (3) narrow slits. 

simplified models. Figure 15 gives the velocity and stress 
results we obtain using the three following models (Fig. 14): 

MODELl, the simplest model, is made of parallel 
cylindrical ducts in one direction. This is a monodimen- 
sional model, the simplest one. Corresponding analytical 
results are those used and referenced in the previous 
section 4.1.1. 

MODELZ, the first refinement, uses cylindrical ducts 
in each direction without any interaction. 

MODEL3, the second refinement, uses connected 
cylindrical ducts in each direction, assuming that the fluid in 
ducts orthogonal to the macroscopic pressure gradient do 
not play any role. 

Boutin [16] shows how to deduce MODEL2 and 
MODEL3 from MODELI. 

FIG. 14. Three approximated analytical models for a 3D array of 
connected cylindrical ducts. 
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Logically, MODEL3 is confirmed as the best, despite an 6. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis 

error of about 15 % for nH2/op. For high frequencies and for Periodic Structures (North-Holland, Amsterdam, 1978). 

for Hl, the accuracy of our results do not allow us to com- 
pare MODEL2 and MODEL3, but the difference is also 
small. 

5. CONCLUSIONS 

The method presented provides encouraging results on a 
numerical side and quantitative results on a physical side. 
We could think of improving our results by using adapted 
integration schemes for high frequencies. Problems occur 
when the wave length of the Green kernel becomes of the 
order of magnitude of the mesh size. A method to use a peri- 
odic Green kernel could also improve the computations. In 
this case the velocity method would not be available, so the 
accuracy of a computation could not be checked by velocity 
and stress results. 

Dealing with the dynamic behavior proposed for porous 
media, H(o) is an important parameter. We have checked 
the scaling behavior proposed in [32] and shown its limits. 
Accurate measurements of H(o) could also provide new 
geometrical information on the microstructure of a porous 
medium, such as an equivalent radius of curvature. 
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